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Quantum Mechanics on a Space-Time Lattice Using 
Path Integrals in a Minkowski Metric 

Hrvoje Hrgov~i~ 1 

Received April 15, 1993 

A simple model of many-body quantum mechanics governed by completely 
local interactions in ordinary three-dimensional space is presented. The equa- 
tions of motion, involving no Euclideanization of time, are elementary exten- 
sions of those describing random walks on a square lattice, and are far simpler 
than those obtained through standard path-integral theory. A quantity is 
defined in terms of populations of particles on the lattice, whose expectation 
value is proportional to the square of the multiparticle wave functions associ- 
ated with the system; for sufficiently microscopic measurement scales, this 
generalized 'density' may take on negative values, thereby circumventing the 
constraints imposed by Bell's inequality. 

1. INTRODUCTION 

The general solution of the one-dimensional wave equation may be 
written as a sum of two functions, or traveling waves. The equations of 
motion of  these traveling waves, first order in time and space, are simple 
translations in opposite directions with a constant speed. 

Section 2 of this paper extends the benefits of such an approach to 
higher dimensions, so that, in general, the n-dimensional wave equation is 
likewise recast as a sum of 2n functions, first order in time, each of  which 
is associated with motion along the positive or negative directions of the n 
axes of  the space. The domain of  the wave functions is a discrete space-time 
lattice; nevertheless, the resultant wave equations and their solutions dis- 
play relativistic covariance in the continuum limit. 

Section 3 shows that this traveling wave decomposition lends itself to 
a statistical implementation. Recall that the kernel of  the diffusion equation 
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is expressible as the continuum limit of distributions of random walks on 
a lattice, and that the time evolution of the diffusion equation may be 
computed by ensembles of particles executing such random walks. By 
assigning these particles a (discrete) phase factor, it is possible to give the 
wave equation a similar implementation, one that is much simpler than 
those obtained by way of standard path integral theory. 

Section 4 shows that this statistical rendering of the wave equation can 
be used to construct a model of multiparticle quantum mechanics, in an 
ordinary three-dimensional configuration space, in a Minkowski metric. In 
general, a single-particle state (or collection thereof) is represented, or 
simulated, by a gaslike distribution of particles propagating throughout the 
lattice at once. A large ensemble of such distributions may then be used to 
obtain the correct quantum mechanical probabilities associated with both 
single- and multiparticle states. This is because there exists a quantity, 
additive in the number of these ensemble members, whose expectation 
value is likewise equal to the square of the corresponding wave functions. 

Section 5 deals with issues that must be considered in applying the 
quantum mechanical aspects of this formalism to macroscopic phenomena. 
The final section discusses related formalisms, and compares them to the 
present one. The appendices show how the traveling wave decomposition 
may be applied to the scalar Klein-Gordon equation, the Dirac equation, 
and Maxwell's equations in a Lorentz gauge. Each of these cases is a 
straightforward generalization of the scalar equations, whereby the topol- 
ogy of the lattice and the coefficients of the associated transition matrices 
are altered in direct correspondence to the internal structure of the associ- 
ated particles. The mass and also the potentials are then introduced as 
perturbations induced by Poissonly distributed random fields, bypassing 
the more complicated formalism of Higgs particles. The appendix also 
considers some mathematical properties of the associated scalar wave 
solutions. 

2. THE DISCRETE WAVE EQUATION 

The discrete analog of the wave equation is defined on an orthonor- 
mal, (n + D-dimensional space-time lattice of points whose spacing is 
unity. The second-order partial derivatives of time and space appearing in 
the D'Alembertian are replaced by their usual finite-difference analog 

82 
Ox 2 ~ b ( . . . , x i , . . . )  = ~b( . . . .  x, + 1 . . . .  ) - 2~( . . . .  xi . . . .  ) 

+ tp( . . . .  x~ - 1 . . . .  ) (1) 

wheie 
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X i ~ X  1,  X 2 ~  . , , ~ X n ~  t 

Thus, the wave equation retains its usual form 

1632 (32632 632) 
(2) 

Setting the constant c, which will be called the speed of light, to 
(I/n) v2 confers several useful properties on the equations, among them, a 
conserved momentum and energy which in the continuum limit converge to 
their standard forms (Courant  et al., 1928); this is done throughout. In 
particular, because of  the cancellation of all terms in the above equation 
corresponding to the central term of the right-hand side of (1), the 
space-time is decoupled into two distinct lattices, even and odd (Fig. 1), 
such that every space-time point (x, t) in the even (odd) sublattice has the 
property that 

t+ ~ xi (3) i=l 
is even (odd). Without loss of generality, it will be assumed that the 
solutions considered here are nonzero on only one of these lattices, unless 
stated otherwise. 

It can be seen from the two preceding equations that solutions of  the 
discrete wave equations form a vector space whose dimensionality is equal 
to twice the number of  points in the lattice (i.e., the sublattice). An element 
of this space of solutions is completely determined by arbitrarily assigning 
values on all points of the lattice at two successive times. 

/ \ / \ / \ 
\ / \ / N / \ / 

X �9 • ,, x �9 N 
\ / \ / \ f �9 
\.2/ \ O/ 1 "~ ~J -3 - !  �9 3 

/ \ / \ / \ 

I \ / -I \ / \ / 
" �9 X �9 X �9 

Fig. 1. Two-dimensional discrete space-time is decoupled into two distinct lattices for a 
certain value of the speed of light; the diagonal arcs shown connect the nearest-neighbor 
points of one such lattice. Higher-dimensional space-times are likewise decoupled into two 
lattices. 
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Any solution of the n-dimensional discrete wave equation defined on 
an n-cubical lattice of N n points may also be given in terms of harmonic 
solutions via Fourier analysis, e.g., 

- I~I u~l  L I-2xi ] ~O(x, t) - ~r exp/-~- (K" x + cot) (4) 
j =  I ~r 

where d(K)  depend on the initial conditions. The frequency co, whose 
functional dependence on the components of K has been suppressed for 
clarity, is given by the dispersion relation 

sm -~ = ~ sin 2-~- + . . .  + sin 2 (5) 

This passes in the continuum limit to the familiar 

co2 = 1 (k~ + . . .  + k ] )  (6) 
n 

where the kx and ky are the respective conjugate variables of the Fourier 
integral appearing in the continuum generalization of (4). Note that if 
c2= 1In as implied above, the numerical integration of (2) is stable. If  one 
were to make the a priori simpler choice of setting c 2 = 1, or indeed to any 
value greater than (1/n) 1/2, then for all except the one-dimensional case, 
there would be spatial frequencies for which the modulus of the right-hand 
side of (5) would be greater than one. The time frequency co would then 
have to contain an imaginary component in order for the equality to hold, 
leading in general to an exponential growth of the solutions. As it is, the 
solutions retain the characteristic undamped periodicity of the continuum 
analogs. Moreover, their deviation from the continuum case stays 
bounded. Of course, only solutions whose associated wavelengths are much 
larger than the lattice spacing can be well approximated by such discrete 
analogs, but in principle the correspondence may be made as close as 
desired. 

2.1. The One-Dimensional Case 

2.1.1. Traveling Waves and Arcs 

As is well known, the general solution of the one-dimensional discrete 
wave equation may be written as the sum of the two traveling waves, 

ip(x, t) = f +  (u) + f _  (v) (7) 

where these two traveling waves are, respectively, functions of the single 
variables u = x -  t and v = x + t, so that they translate unchanged in 
opposition directions as time passes. 
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Indeed, this propagation from one space-time point to its neighbors 
suggests that these traveling waves are functions more naturally defined on 
the arcs that may be said to connect neighboring space-time points (cf. Fig. 
1); however, the utility of such a view becomes fully manifest only in higher 
dimensions. Let f~_(x,  t) and f in(x ,  t) denote functions, which will be 
referred to as flows, defined on arcs connecting space-time points of the 
form (x T- 1, t - 1). At the risk of redundancy, let f~ t) similarly denote 
functions defined on arcs connecting space-time points of the form 
(x _+ 1, t + 1). Obviously, 

fi~ (x, t) ~f~ ~ 1, t -- 1) (8) 

The decomposition of (7) then implies 

f ~ ( x ,  t) - out - f + (x,  t) (9)  

Any solution of (2) may then be expressed in terms of functions defined on 
the arcs. 

Like the set of point solutions, the set of arc solutions also forms a 
vector space, and the traveling wave decomposition implies that there exists 
a homomorphism from the arc solutions to the point solutions (Fig. 2). 
Moreover, this homomorphism is preserved over time, under the respective 
time evolution of each system. By the implicit use of this homomorphism, 
(7) may be restated as 

~ ( x ,  t )  - ~ + f _  ( , t) (10) + f _  ( , t) =f~_~t(x, t) o.t x - f  +(x, t) in x 

The homomorphism is obviously not one-to-one, since by everywhere 
setting 

f~  t ) = - r ~  t ) =  0~ 
+ \ , J - -  \ , 

where ~ is an arbitrary constant, one obtains an arc solution that under the 

(9) 
{ E f ( x , t ) }  �9 { E f ( x , t  + l)} 

Fig. 2. 

I t 

(2) 
{r t)} , { r  + 1)} 

There exists a homomorphism ,~ from space of arc solutions to the space of point 
solutions that is preserved under their respective time evolutions. 
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homomorphism is mapped onto the trivial (i,e., everywhere vanishing) 
point solution. However, by a proper choice of the basis functions, the 
expression of a given solution in terms of the flows can (in any number of 
dimensions) be made unique, so that the relation between the point 
solutions and arc solutions becomes an isomorphism. 

2.1.2. Completeness 

In considering the notion of completeness, for any number of dimen- 
sions, the space in question is assumed for convenience to be a torus of 
length 2N in all spatial dimensions, where N is furthermore an even 
number. Moreover, let all solutions have the property that 

~( . . . .  xi . . . .  ) = -@( . . . .  x i +  N , . . . )  (11) 

where the + sign in the expression xi + N implies addition modulo N. 
Therefore, a solution is completely determined by its boundary conditions 
on the subspace of points for which the x~ range from 0 to N -  1. By 
making N as large as necessary, the desired generality is retained. [Choos- 
ing N to be even makes the initialization described below identical, up to a 
change of sign, for each suhspace. Imposing the parity condition (l l) 
excludes the unphysical or uninteresting solutions containing zero-fre- 
quency modes or terms linear in the time or space variables.] 

Returning to one-dimensional systems, let h+_(x- xo) stand for the 
traveling wave solutions that at t --to are zero everywhere except on the 
arcs going out from the point Xo to the respective point x o + 1, where they 
are 1. Such solutions, and their n-dimensional generalizations, will be 
called hodotic solutions (from the Greek word for "path");  they have many 
unusual properties, especially in higher-dimensional spaces, some of which 
will be discussed in the appendix. For purposes of clarity, their time 
dependence has been suppressed. 

A moment's thought will show that under the homomorphism, these 
arc solutions correspond to the point solutions that at t = 0 are equal to 
3x.x0 and at t = 1 are respectively equal to ~x,xo+l, where fix.x, is the 
Kronecker delta. 

Next, let Go(x - x o )  and GI (x - x ~ )  be the point solutions of the wave 
equation whose initial conditions (at times t o and t~ = to + I), are 

Go(x - Xo) = 6x,xo 6t.,o 

G I ( X  - X l )  = 6X,XlOt,t, (12) 

X, Xo, X~{0, 1 . . . . .  N -  1} 

Again, their dependence on time has been suppressed. 



QM on a Space-Time Lattice 751 

It  is clear that  any solution of  the wave equat ion m a y  be expressed as 
a linear combina t ion  of  the Go and GI.  On the subspace of  length N 
ment ioned above,  the function Go(x-Xo) and GI(X-Xl) m a y  be ex- 
pressed in terms o f  the arc functions h+ and h_ as 

l N - - 2  

Go(x - Xo) = ~ ~ {h+ (x - x0 - x ' )  Sgn(x - Xo) 
x 

- h (x - Xo - x ' )  Sgn(x - Xo - 1)} (13a) 

and 

1 ~ ~ 
= { - h +  (x - Xl - x ' )  Sgn(x '  - x l )  a ~ ( x - x l )  2x'=1,3 .... 

+ h (x - xl - x ' )  Sgn(x '  - x l )  } 

where 

(13b) 

1 if x > O  
Sgn(x) = - 1 otherwise 

is even (odd),  then the solutions in question are Again, note  that  if t o 
assumed to be nonzero  on the even (odd)  sublattice; likewise, it is assumed 
that  Xo is even (odd),  while Xl is odd (even). 

As the equat ions show, these Green ' s  functions for  the discrete wave 
function m a y  be constructed by interlocking positive and negative hodot ic  
solutions o f  opposi te  sign (Fig. 3). Therefore ,  the traveling waves com- 
pletely suffice to specify the solutions of  the wave equation.  

Note  that  these Green ' s  functions require nonzero flows across the 
entire space. Therefore ,  even if the solution one wishes to simulate is 
initially nonzero  only in some localized proper  subset o f  the s p a c e - - s a y ,  
one that  can be covered by a line segment  (or  in n dimensions,  an 
n - c u b e ) - - i t s  expression in terms o f  the Green ' s  functions involves nonzero  
flows in a region extending across the entire space. However ,  if this (point)  
solution satisfies the addit ional  p roper ty  that  its discrete integral over  space 
is cons tant  [as (2) implies it would be if it is the same at any two successive 

, 0 ~ 1 e 

x2o, % [,/,,o / x o  
. ' q L _ _ , X /  . v '  

0 0 O 0 

Fig. 3. An arrangement of hodotic solutions that yields a Green's function GI (x - x  I ) for 
the discrete wave equation. 
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times], then one can find an arrangement of hodotic solutions that is also 
nonzero only in a localized subset. 

2.2.  The Two-Dimens iona l  Case  

In passing to the two-dimensional case via the present analysis, 
solutions of the wave equation are again to be expressed as a linear sum of 
components. Each of these components will likewise be associated with 
flows along the arcs connecting nearest neighbors. However, since in higher 
dimensions even a localized wave packet spreads and deforms, it is to be 
expected that there will be mixing among these modes of propagation, 
instead of  the trivial translation found in the one-dimensional case. 

At any time, let each lattice point be viewed as a kind of black box, 
into which enter and from which exit four amplitudes. The latter are to be 
determined solely in terms of the former, in a linear fashion. If, as in the 
one-dimensional case, the flow out from the point (x, y, t) and in to the 

o u t  point ( x + l , y , t + l )  is denoted as f ~ + ( x , y , t ) ,  or equivalently as 
fin+ (x + 1, y, t + 1), and the flows to other points are analogously denoted, 
these considerations may be restated as 

and 

$ ( x ,  y,  t) = ~.,V . . . .  f~ntx y,t) ---- X..,da~"~ f~ , y ,  t) 
t7 c7 

(14) 

fout  ~ '  cin f in  = ~  ~,~,jo, (15) 
( r '  

where a, a 'E{x+ ,  x , y+ ,  y_},  and where the coefficients of the matrix 
in c~.~, are to be determined. 

Consider the solution of the wave equation corresponding to a nonzero 
flow in only one arc, say, fln+ (0, O, O) = 1, with all other incoming flows to 
all other points being zero; i.e., a two-dimensional hodotic solution. As in 
the one-dimensional case, the boundary conditions for the corresponding 
point solution are qs(x, y, 0) = 6~.O6y.O and ~O(x, y, 1) = 6x, t6y,o. 

Since the wave amplitude is thus specified on the entire space at two 
successive times, one can iterate these boundary conditions according to the 
wave equation (Fig. 4), and thus uniquely determine the first column of  the 
matrix c in , Repeating this analysis for the hodotic solutions of the remain- 
ing three directions completes the specification of the matrix, showing that 

11 ilr il f,, 1 - 1 1 1 f x_  (16) 
fy = 2  1 1 1 -- § 

1 1 --1 Lfy_J 



QM on a Space-Time Lattice 753 

1/2 1/2 

t=2 " ~  

1 

Fig. 4. The x+ hodotic solution, at t = 0, I, and 2. 

By using the time invariance properties of the wave equation, one also 
could have just as easily determined the coefficients of the inverse of the 
above matrix, c~.~,~ and would have found them to be identical. It is then 
a matter of algebra to show that the sum of the ingoing or outgoing flows 
at any point does indeed obey the discrete wave equation. 

Note that the sum of the coefficients along any column of the matrix 
is one, so that the sum of flows entering a point at any time is equal to the 
sum of the exiting flows. This is also obvious from (14). Furthermore, the 
matrix is unitary, so that the sum of the squares of the entering (and thus 
the exiting) flows is conserved. Thus the evolution of such a system can be 
viewed as a network flow of a conserved quantity. 

2.3. Higher-Dimensional  Cases 

In higher dimensions, the hodotic solutions h i •  Xo, t) are defined 
(in terms of their point values on the lattice) by the initial conditions 

{6xi  o for t = to 
hi+-(x-x~ 6~xo_+ei for t=to+l (17) 

where the j th component of ei has the value ~ij. In terms of their arc 
amplitudes, the hodotic solutions are initially equal to unity on the xi=~ arc 
leading out of the point x o, and zero on all the others. 

The suppositions (14) and (1S), and subsequently utilizing the associ- 
ated hodotic solutions in order to determine the coefficients of the transi- 
tion matrix, can be readily generalized to higher dimensions. For example, 
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in three dimensions, the transition matrix is determined to be 

out 1 - 2 1 1 1 1" fx  + in 

- 2  1 1 1. 1 1 f x _  

l i  1 1 1 1 - 2  1 1 fy+ (18) 
L = 3 1 1 - -  2 1 1 ] L l 

1 1 1 1 1 - 2  f~+ 
1 1 1 1 - 2  1 f z  

In the general n-dimensional case, the coefficients of the matrix in any row 
or column will be l /n,  except for the coefficients connecting oppositely 
directed flows (e.g., cx+.x_), which will be - ( n  - 1)/n. 

In each case, the number of traveling waves is determined by the 
number of adjacent neighbors of the points of the lattice, and the evolution 
of a given wave may be determined by the study of the corresponding 
hodotic solutions. 

The considerations of completeness may be directly generalized to 
higher dimensions merely by imbedding the one-dimensional expressions 
for the Green's functions (13) along any of the axes. This is arguably the 
simplest way to express the Green's functions, although in higher dimen- 
sions more elaborate expressions are possible (Fig. 5), since the overcom- 
pleteness of the hodotic solutions is more extensive. 

It is possible to formally extend the notions of traveling waves to 
nonorthonormal lattices, generalizing the discrete wave equation to hex- 
agonal, tetragonal, or indeed to any set of points where each point j has 
some privileged subset X ( j )  of generalized nearest neighbors; the "wave 

-1/2 -1/2 f 1/2 

Fig. 5. A two-dimensional noncollinear arrangement of hodotic solutions that yields a 
Green's function for the discrete wave equation. Nearest-neighbor points are displaced by one 
unit of time. The circle marks the support of the point solution. 
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equation" then becomes 

2 
- ~ r  (19) ~,(j,  t + 1) + ~ ( j ,  t - 1) l y ( j ) [ + ,  ~ <J) 

where IX(j)[  is the number of nearest neighbors--not  necessarily constant 
throughout the space--corresponding to the point j. Again, each pair of 
neighbors will induce a flow, with an interaction among flows that may be 
determined by studying the behavior of the associated hodotic solutions. 
As before, there will be a conservation of the sum of the flows, and also of 
the sum of their squares, since the transition matrix is in all cases unitary. 
Of course, how well, if at all, the resultant system mimics the continuum 
wave equation in some limit depends on the particular lattice employed 
and, if definable, the associated dispersion relation. Gudder (1988a) has 
studied even more general systems of flows on lattices and graphs, subject 
only to the condition that the transition matrix at each lattice point or 
graph node satisfies a unitarity condition. 

Effective Dimensionality 

As an aside, note that the discreteness of lattice systems allows the 
number of dimensions to be easily manipulated in order to apply the above 
results to other systems of equations. Consider an orthonormal toroidal 
lattice, as before, and suppose the number of dimensions n is very large, 
but that all except m dimensions are exactly one unit long. This means that 
for all but the first m dimensions, the arcs and flows leading out of a point 
will lead back to the very same point. That is, the origin and terminus of 
such an arc are one and the same. This also means that the even- and 
odd-parity sublattices are now one and the same. 

In effect, such a system is m-dimensional; however, the speed of light 
is still x/~ rather than x /~ ,  and the number of types of flows is likewise 
equal to twice the actual dimension n, rather than m. 

The utilization of such systems with "thin" dimensions is a very useful 
maneuver, and will appear again in the study of the Kle in-Gordon 
equation. Note that the addition of these spurious dimensions does not 
change the fact that the associated difference equations are numerically 
stable, and that the Fourier frequencies are always real. Trivial modifica- 
tions of the above equations also allow one to extend the above results to 
spaces containing perfectly reflecting or absorbing obstacles, as well as to 
situations in which the speed of light, or alternately, the index of refraction, 
varies throughout the space. The appendix will discuss how to generalize 
the results obtained for the scalar wave equation to the Klein-Gordon,  
Maxwell, and Dirac equations. 



756 Hrgov~i~ 

3. PATH SUMMATIONS 

The same Monte Carlo (and related) methods that are commonly used 
to simulate diffusion phenomena (Farmer et al., 1984; Toffoli and Margo- 
lus, 1987; Boghosian, 1990; Maneville et al., 1990; Chopard and Droz, 
1990; Binder and Heermann, 1988) may be extended to the simulations of 
the wave equation, using the results of the previous section. Such an 
approach is to be distinguished from the related method of simulating 
lattice-wave solutions by density variations of lattice gases (Toffoli and 
Margolus, 1987; Frisch et al., 1986). The validity of such an approach may 
be examined by way of the associated (linearized) Boltzmann equation 
(Farmer et al., 1984; Toffoli and Margolus, 1987; Boghosian, 1990; 
Maneville et al., 1990; Chopard and Droz, 1990; Binder and Heermann, 
1988; Hasslacher, 1988; Frisch et al., 1986; Hardy et al., 1976). While it is 
also possible to obtain a cellular automaton model of the wave equation 
directly and without recourse to path summations and diffusion phenom- 
ena (Chen et al., 1988), the present approach is more easily extensible to 
the study of Klein-Gordon and related equations relevant to physics. 

We briefly recapitulate some results of the random walk as applied to 
the diffusion equation, in order to emphasize the similarity of that formalism 
to the present one. The exposition given here is presented in such a way as 
to anticipate and facilitate its subsequent application to the wave equation. 

Consider a discrete dynamical system consisting of particles executing 
random walks on an orthonormal n-dimensional lattice. Henceforth, such 
particles will be referred to as tokens, to distinguish them from the particles 
whose wave functions will later be simulated by a gas of such tokens. At 
any step in the (discrete) evolution of the system, tokens are to be found at 
some lattice point, and they move to a randomly chosen nearest-neighbor- 
ing point in the subsequent time step. 

The probability that a token initially at the lattice point x 0 will at time 
T be found at x may then be written as 

Prob(x; T[xo; 0) -- ~ W(I )  (20) 
I 

where I is an indexing of the set of (2n) r lattice paths originating at Xo, 
ending at x, and containing T steps. If one assumes that the probability pj• 
for taking a step along a given direction xj_+ is everywhere constant, then 
the weighting factor W(I )  have the value 

W(1) --- (p~+)"'+(Z)(p1_)r~-~t) "'" (pn+)r"+(Z)(p~_) r"-(~) (21) 

where r,. +_ (I) is the number of steps along the x;_+ direction that are found 
in the Ith path. 
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In the case where all the Pi~ are equal, the right-hand side of  (20) can 
readily be shown to converge in the continuum limit to the kernel for the 
n-dimensional diffusion equation (Chandrasekhar, 1943). 

3.1. Lattice Ensembles 

One can use (20) to give diffusion phenomena a statistical implementa- 
tion. By using an ensemble of appropriately initialized lattices (with the 
initialization procedure to be discussed below), one can use the distribution 
of  tokens on these lattices to simulate a solution of  the diffusion equation 
f (x ,  t). Like any solution of  the wave equation that is to be simulated via 
the present formalism, f (x ,  t) is assumed to be approximately constant over 
the length of the lattice spacing (and over any time interval the length of  
the fundamental time increment). It is atso assumed to be bounded, 
normalized so that its maximum value is initially unity, and, for now, 
positive. 

Let the number of  lattices in the ensemble be some very large number 
M. Define nj(x) to be the number of  tokens at the point x at time t in the 
j th  lattice, where j ranges from 1 to M, and where the time dependence will 
customarily be understood. 

To say that at time t the statistical amplitude at x is f (x ,  t) is to say 
that 

1 M 
f (x ,  t) = ~:~.=, nf(x) (22) 

regardless of how the occupation numbers vary from lattice to lattice. 
Likewise, it will be said that an ensemble of  lattices statistically simulates 
the funct ionf(x,  t) if the above relation holds. (In any practical implemen- 
tation, the above equals sign must be interpreted to mean 'approximately 
equals, to the desired degree of  accuracy.') 

3.2. Initialization 

Next, consider how to initialize the ensemble of lattices corresponding 
to f (x ,  0), beginning with the following definition. Performing an action A 
'with probability p' is defined as first obtaining a random number ~, 
uniformly distributed between 0 and 1. If  ~ < p, then action A is performed; 
otherwise, it is not. The random numbers ~ obtained from multiple 
repetitions of  such actions are assumed to be statistically independent. 

Each lattice of  the ensemble is to be initialized independently of the 
others. At point x of say, the j th  lattice, one places a token there 'with 
probability f ( x ,  0).' One then repeats this procedure for every other point 
of the lattice. 
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Every lattice in the ensemble, with j ranging from 1 to M, is initialized 
in this same way. This of course means that in general there will be more 
than one token per lattice. (Indeed, one could in this case have chosen 
simply to place the tokens from all the M lattices onto one single lattice, 
but again, the exposition given here is made in such a way as to facilitate 
its application to the wave equation.) 

Let us suppose that at time T, an ensemble of lattices statistically 
simulatesf(x, T). In each subsequent time step, let each token move to one 
of its 2n nearest neighbors, the choice being made randomly for each token. 
Assume there is no restriction on the number of tokens that can be found 
at a given point on any lattice. 

By using basic probability theory, one may use (20) to show that an 
ensemble of lattices initialized according to the preceding procedure will 
continue to statistically simulate f (x ,  t) at each subsequent time step. In 
order to simulate phenomena lasting T time steps, a number of lattices on 
the order of  ( 2 n ) r M o  will be required in general, where Mo is the number 
of  lattices required to initially statistically simulate a given solution to the 
desired degree of accuracy. 

3.3. Extensions to Complex Solutions 

There is, of course, nothing about the diffusion equation that requires 
the solutions to be real. Suppose that each lattice token is endowed with an 
additional degree of freedom corresponding to a discrete phase factor, 
having one of the four possible values of 1, +i ,  - 1 ,  and - i ;  tokens in 
these respective phases will respectively be referred to as being positive, 
posimaginary, negative, and negimaginary. 

Assuming that at the lattice point x of the j th  lattice there are a 
positive tokens, b posimaginary tokens, c negative tokens, and d negimag- 
inary tokens, let the definition of the occupation number nj(x) be modified 
so that 

ni(x ) = (a - c) + i(b - d )  (23) 

Therefore, this 'occupation number' is now in general a complex integer. 
Because a, b, c, and d appear in (23) only as the differences (a - c )  and 
(b - d), the statistics will not change if oppositely phased tokens (positive 
vs. negative, posimaginary vs. negimaginary) found at the same arc are 
assumed to annihilate each other, leaving behind tokens of at most two 
phases; this assumption will be made throughout. 

One can then use ensembles of lattice tokens to statistically simulate 
complex solutions as well. To initialize the ensemble of lattices to corre- 
spond to the solution f (x ,  t), where f (x ,  t) may now be complex, one first 
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defines the four positive functions 

1 -+ Sgn(f(x,  t)) 
fRe• (X, t) = • 2 R e [ f  (x, t)] 

(24) 
1 + Sgn(f(x,  t)) 

fire+ (X, t) = • 2i Im[f(x,  t)] 

after which one simply initializes the ensemble according to each of the 
four functions simultaneously, in each case using the correspondingly 
phased tokens; positive tokens forfRe+, posimaginary tokens forf~m+, and 
so on. lit is assumed tha t f (x ,  0) has been normalized so that none of the 
maxima of the above four functions exceeds unity.] Therefore, at the end of 
this initialization every lattice will in general contain all four kinds of 
tokens, though at any given point on the lattice there will be tokens of at 
most two phases. 

3.4. Applications to the Wave Equation 

To statistically simulate a solution of the wave equation, one must first 
expand the point solution (which, as stated previously, is specified by its 
values on the points of the lattice at two subsequent time steps) into an arc 
solution, by way of the Green's functions (13). It is convenient to normal- 
ize the solutions so that the (discrete) integral of the squares of the arc 
amplitudes is unity, i.e., 

E 0[ 2 = 1 (25) 
{x.~} 

given that this quantity is conserved. (The summation indices denote that 
the summation is taken over all the nearest-neighbor arcs of the lattice.) 

Then, one initializes the lattices as in the case of the diffusion equa- 
tion, except that instead of placing tokens at a point x- -wi th  a probability 
and phase dependent on the amplitude at that po in t - -one  now places 
tokens in the arcs leading out from x, in likewise accordance with the 
amplitude at those arcs. A token in the a arc of the point x will then be 
assumed to execute a step in the a direction in between the times t = 0 and 
t = 1, where the 2n possible values of a again represent positive or negative 
directions along the axes of the lattice. 

Just as in the above section dealing with traveling wave solutions, the 
lattice points should here again be viewed as black boxes, into which 
tokens enter and out of which other tokens are generated. Explicitly, the 
dynamics is such that a token taking a step terminating at some lattice 
point will cause the lattice point to generate tokens in all the outgoing arcs 
(with probability distributions to be discussed below). In other words, the 
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token numbers will no longer be constant, so that it is only by averaging 
that one recovers the conservation of amplitude and its square that is 
implied by the unitarity of the transition matrices. 

The tokens in the outgoing arcs will in the subsequent time step travel 
along those arcs to the corresponding nearest-neighboring lattice point, 
where the generating process will be repeated. (The parent token is 
assumed to annihilate after reaching its destination lattice point.) 

Consider next the transition matrices for the n-dimensional generaliza- 
tion of (15). Let Ic~.~,l designate the probability that a token coming into a 
lattice point along the a' arc will produce an outgoing token in the a arc. 
If c,,~. is positive, then the outgoing tokens will have the same phase factor, 
or sign, as the incoming tokens. If it is negative, the outgoing tokens will 
have the opposite phase of the incoming tokens. 

For example, in the two-dimensional case (Fig. 4), a positive token 
coming into a lattice point along the x+ arc will produce 'with a probabil- 
ity 1/2' a positive token in the y+ (or y_) arc. It will also produce 'with a 
probability 1/2' a negative token in the x arc, this change of sign being 
mandated by the fact that the coefficient c . . . .  + is negative. The generaliza- 
tion to other dimensions is straightforward. 

It is assumed that a parent token generates output tokens in the 
outgoing arc a completely independently of the tokens it produces in any 
other arc a'. Moreover, if there is more than one token entering a lattice 
point, the tokens emitted because of incoming token A are generated 
independently of the tokens emitted because of some other incoming token 
B. (Once the tokens are generated, it is again assumed that oppositely 
phased tokens found simultaneously in any arc annihilate each other.) 

An ensemble of lattices that initially simulates the wave equation will 
then continue to do so in subsequent time steps, as may be shown by the 
same calculation as in the case of the diffusion equation. If an ensemble of 
size M is initialized to simulate the wave solution ~b(x, 0), then in order to 
obtain the (point) solution at any other time T, one allows the ensemble of 
lattices to evolve for T time steps and then obtains the quantity 

M 

(l /M) ~ ns(x, T) (26) 
j = l  

where nj(x, T) now refers to the sum of the occupation numbers for the 
arcs leading into the point x (at time T in the j th lattice). Again, simulating 
phenomena lasting T time steps to within an initially prescribed accuracy 
will require a number of lattices on the order of (2n)7M0, where M0 is as 
before. Note that even though the wave equations are time-reversal invari- 
ant, the dynamics used in their simulation is asymmetric with respect to 
time reversal, and it is only by averaging that the symmetry is recovered. 



Q M  on a Space-Time Lattice 761 

The relationship between amplitudes and paths on the lattice that 
exists in the case of the diffusion equation may be retained in the present 
case. A token coming into x along the a are that produces an outgoing 
token in the tr' arc still specifies a path increment; any token generated in 
another outgoing arc likewise represents the increment of yet another path. 
Given that in the general n-dimensional case the coefficients of the transi- 
tion matrices are 1/n and ( 1 - n ) / n ,  one may heuristically say that the 
(generalized) probability of a token making a path increment along an 
incoming arc a to an outgoing arc a '  is l/n, unless the two arcs are 
oppositely oriented (implying that the associated path increment is a 
'reverse step,' or reversal), in which case it is (1 - n ) / n .  

The relation (20) has an analog in the case of the wave equation, in 
that the hodotic solutions (and, given the completeness thereof, any 
solution of the wave equation) can similarly be expressed in terms of 
summations over paths. In fact, in accordance with the considerations of 
the previous paragraph, the n-dimensional hodotic solution has the likewise 
expansion 

h~(x - x 0, T) = ~ W(I , )  (27) 

where the 2n possible values of a again represent positive or negative 
directions along the lattice, and where I~ is an indexing of lattice paths of 
length T whose initial step is along the a direction. In the present case, 

W(I~) = ( 1/n) 7"( 1 - n) R~,.) (28) 

where R(Io) is the number of reversals in the path I , ;  for the one-dimen- 
sional case n = 1, zero to the zeroth power is defined to be one. 

Thus, there exists a statistical representation of the flows and traveling 
waves of the wave equation. The path summation formalism is retained, 
except that the paths are converted into chains of causality, with the result 
that the Huygens picture of wave propagation, whereby any portion of a 
wave itself emits a wavelet, is likewise given a statistical rendering. 

4. QUANTUM MECHANICS 

The lattice systems considered here, with their ability to reproduce 
wavelike phenomena by way of discrete particle motions, provide a novel 
way of simulating quantum mechanical systems, as the present section will 
show. As a first step, a lattice quantity will be introduced whose expecta- 
tion is equal to the absolute square of the wave function under consider- 
ation, and which is additive in the number of ensemble members. Initially, 
the wave functions will for convenience be assumed to satisfy the lattice 
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wave equation, so that they can be interpreted as the wave function of 
some massless and spinless particle; moreover, the discussion will at first be 
restricted to one-particle systems. 

4.1. Bilattices 

The phase tokens used in the previous section to statistically model a 
solution to the wave equation 0 can obviously be used to obtain the square 
of the solution as well. However, by using two independent sets of 
tokens--one to represent ~, and one to represent O*-- i t  is possible to 
obtain 1O ] 2 in a more direct fashion, with the duality between the two sets 
of tokens being in direct correspondence to that which exists between the 
bras and kets of Dirac's formalism. 

Consider again a lattice that has been initialized to simulate some 
wave function O(x, 0). Next, use a differently labeled, but otherwise identi- 
cal set of tokens to initialize the identical wave function on that same 
latt ice--note that because the initialization procedure is nondeterministic, 
the actual configurations of the two sets of tokens on the lattice will in 
general be different. The first set of tokens will be referred to as bra tokens, 
the other as ket tokens, and the lattice containing these two types of tokens 
will be called a bilattice. 

Let r~(x) refer to the (complex) occupation number, as defined above, 
obtained by counting the ket tokens in all the arcs leading into the point x; 
similarly, let fi(x) refer to the occupation number obtained by counting the 
bra tokens on the same arcs. The motion of the bra tokens is totally 
independent of that of the ket tokens. 

4.2. Event Counting 

Although there is no direct correspondence between lattice tokens and 
the particles of matter whose wave functions are being simulated, there 
does exist a quantity, expressed in terms of the location of tokens at a 
lattice space-time point, whose expectation is equal to the probability of 
finding a matter particle at the corresponding space-time point in the 
physical space being simulated. 

By way of analogy, the simultaneous presence of any bra token and 
any ket token at some lattice point x will formally be referred to as a 
one-particle event, for reasons which will become clear below, and will be 
denoted as e(x) (the time dependence is suppressed for clarity). Taking the 
summation of such events over an arbitrary set of lattice points will 
likewise be referred to as a one-particle event count, even though the 
increments to this count need not be positive, and may have an absolute 
value greater than one. Every event has a phase factor associated with it, 
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which is defined to be the phase factor of the ket token times the complex 
conjugate of the phase factor of the bra token, and the event count is 
incremented algebraically according to the phase of the respective events. 
Thus, if .4 denotes a bra token and/~ denotes a ket token, one may express 
the phase factor of the event for which a bra token A and a ket token/~ 
arrive at x as 

Ph[e(x)] = Ph[J]* Ph[B] (29) 

Typically, the distinction between e(x) and the weighting factor Ph[e(x)] 
will be ignored, and the former expression will be used to designate the 
latter. If j bra tokens and k ket tokens arrive at some space-time point 
(x, t), they collectively represent jk distinct one-particle events, so that one 
may write, by way of definition, 

e(x) -= ~(x)r~(x) (30) 

where the summation is .over all the one-particle events at x (and t). Now 
the initialization of bra tokens is statistically independent of the initializa- 
tion of the ket tokens. Therefore, on any bilattice which has been initialized 
to simulate the wave function O(x, 0), it is the case that 

~*(x)~(x) _-" 0*(x,  t)~(x, t) 

where the count has been taken at t. 
Note that bra and ket tokens will increment the event count taken at 

a given point even if they do not come into that point on the same arcs, so 
long as they are both on the same bilattice. Also note that since the 
expected value of the event count is always real, one may as well ignore any 
events having an imaginary phase, so that with such an understanding, the 
results of the event count can be considered a real quantity. 

Let r~(x) denote the occupation number of ket tokens found in the a 
arc in a bilattice leading into the point x, and ~*(x) likewise denotes the 
complex conjugate of the bra occupation number of that same arc. It then 
follows that the expected value of r~*(x)t~(x), when integrated over all the 
arcs in the bilatfice, is conserved, due to the unitarity of the transition 
matrices. This quantity is to be distinguished from the expected value of the 
summand in (30). The latter is obtained by considering tokens arriving at 
points, and its discrete integral over time varies, while the former (constant) 
quantity is obtained by considering the location of tokens on the individual 
arcs. 

4.3. Diffraction 

One can of course initialize bilattices to simulate to a wave packet of 
some well-defined momentum. Consider the following double-slit diffraction 
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experiment such as is found in standard introductory quantum mechanics 
texts. Imagine placing in the bilattice a screen, facing orthogonally to the 
momentum of  each wave packet. Assume the screen contains two parallel 
slits having widths on the order of  the mean wavelength of  the wave 
packet, with the slits being separated by a distance smaller than the 
coherence length of the packet. Any convenient boundary conditions may 
be imposed on the s l i t s - - for  example, those corresponding to perfect 
absorption. 

Consider making an event count at some observation point x on the 
opposite side of  the screen at some distance that is large in comparison to 
the widths of the slits, and which a lattice particle can only reach by 
propagating through those slits. Quantum mechanics tells us that the 
probability of a particle being found at a point x of  the observation screen 
at some time t is 

l@l(x) + ~bxi(x)l 2 

where ~b~ is the amplitude whose square would determine the probability of 
a particle arriving at x if only slit I were present, and so on. The time 
dependence of the wave functions will be understood. 

Suppose that a large number of identical lattices are initialized to 
simulate some function if(x). Consider the event count taken on all the 
points corresponding to some point x for which complete cancellation 
occurs, i.e., where the amplitude associated with one slit totally cancels the 
amplitude associated with the other. 

Quantum mechanics predicts that in such a region, no particles will 
arrive. In the present model, however, there are in general many increments 
in what is called the event count; the result of the count would then be zero 
(or, more precisely, vanishingly small in comparison to the counts taken in 
a region of constructive interference) only because positive events are as 
equally likely as negative events. 

The absolute square of  wave function can be written as 

where the dependence on time and space has been suppressed. Note that 
the events, i.e., the simultaneous arrivals of  a single bra and a single ket 
token, can be conceptually placed into four classes, corresponding to each 
of the above four terms. Respectively, a token from the first class repre- 
sents events in which both the bra and ket token came through slit I; the 
second, an event for which both came through slit II; the third, an event for 
which the bra token came through slit I and the ket came through slit II; 
and the fourth, an event for which the bra token came through slit II and 
the ket came through slit I. (Saying that the bra token of  a certain event 
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came through a certain slit means that the chain of interactions that led to 
the token's arrival at the observation point define a space-time path that 
leads through that particular slit. Note again that several tokens can be 
found at any bilattice arc, each one being associated in general with a 
distinct path.) 

Depending on how the slits and the observation points are situated, 
one may recast all the features of  the particle diffraction gedankenexperi- 
ment in terms of event counts obtained on the ensemble of  bilattices. For 
example, shutting one of  the slits or slightly perturbing the tokens exiting 
from either slit can block the arrival of  certain events or destroy the 
coherence evidenced by the third and fourth terms in the above expression. 

The interference patterns shown in Fig. 6 were obtained by simulating 
a double-slit diffraction experiment by way of the discrete, statistically 

I I I I I I I I 

A 

Fig. 6. Interference patterns obtained in a two-dimensional double-slit diffraction experi- 
ment. Dashed lines show the event count distributions subsequent to the emission of 50, 100, 
150, and 200 million "photons" as a function of position along the observation screen. The 
solid line indicates the exact solutions of the interference pattern corresponding to the 
lattermost event count distribution. 
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implemented two-dimensional lattice wave equation (2). The dimensions of 
the bilattice are 33 • 75 units, with the observation screen, i.e., the line of 
points along which the event counts are taken, being oriented along one of 
the long edges of the bilattice. On the edge opposite to the screen are the 
one-unit-wide slits (i.e., the emission points) which are situated • 10 units 
from the center. The wave packets, which were each given the standard 
normalization indicated in (25), were such that their contributions to the 
bra and ket occupation numbers at the slits were integers whose expected 
values varied sinusoidally, with a period of 10 time steps. The total time 
duration of each packet was 50 time steps. The nondeterministic evolution 
of the token occupation numbers at any arc was obtained simply by 
iterating the arc amplitudes at any time step according to (16) and then 
incrementing any resultant half-integer occupation number by a random 
choice of • 1/2, thereby ensuring that the token occupation numbers were 
always integers. The remaining boundary conditions were such as to 
correspond to total absorption of the tokens at any of the lattice's edges. 

The four dashed lines show the event count distribution after the 
emission of 50, 100, 150, and 200 million "photons," respectively, with the 
abscissa ranging along the one-dimensional observation screen, from 0 to 
75. Each tick on the ordinate axis corresponds to a million events. The 
solid-line graph--which has been normalized so as to have the same 
integral as the graph corresponding to 200 million photons--shows the 
exact solution of the interface pattern, obtained by integrating (2) with real 
(as opposed to integer) arc amplitudes and emissions. 

Note for future reference that it is possible to make the amplitudes in 
even this discrete formulation quasicontinuous by assigning each bra and 
ket token a fractional weight of 7, where y is a small positive number. Then 
the arrival of a bra and ket token would only increment the event count by 
a factor of + 72, where the sign depends on the phase of the tokens. As the 
value of 7 is made to approach infinitesimal values, the amplitudes take on 
quasicontinuous values; nevertheless, as will be shown, the way in which 
the mass and potential terms are incorporated into the formalism implies 
that the amplitudes are ultimately best considered as discrete entities rather 
than continuously varying quantities. 

4.4. Multiparticle Phenomena 

Consider next the simulation of multiparticle phenomena. 
Assume for now that all the particles (as opposed to tokens) being 

simulated are indistinguishable, and are fermions; the case of simulating 
bosons will follow straightforwardly. Although the systems under consider- 
ation in this paper are relativistically covariant (in the continuum limit), 
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the number of particles will still be a good quantum number in the absence 
of interactions, so that it is permissible to speak of multiparticle states 
containing a fixed number of particles. 

In considering multiparticle wave functions, it is necessary that the 
tokens corresponding to different one-particle states be distinguishable 
from the tokens corresponding to another. There are a number of ways to 
impose this distinguishability, some more physically plausible than others, 
but for the sake of the presentation, it is simplest to assume that the tokens 
corresponding to different states are distinguished by a label or a tag of  
some sort, which shall be referred to as a particle index. In fact, this particle 
index can be viewed as a sort of rudimentary momentum, given that it 
represents an extra degree of freedom that a particle may assume. How- 
ever, it does not influence the dynamics of a token. The range of the 
particle indices, i.e., the number of  distinct values they can assume, needs 
to be only as large as the number of one-particle states that are being 
simulated. 

4.4. i. Initialization 

Consider the Slater determinant of the N one-particle states 
q~l(x) . . . .  , qSN(x ) by way of which the N-particle wave function is ex- 
pressed in terms of  its one-particle state constituents ~bi(x ), with i ranging 
from 1 through N, as 

l ~p ~p[1](Xl) " '"  (gp[N](XN)G(P) (32) 4,(x~ . . . . .  x N )  = 

where P is some permutation of the numbers 1 through N, the sum is over 
all such permutations, and o-(P) is 1 or - 1  according to whether the 
permutation is even or odd. (Again, the time dependence of the wave 
functions has been suppressed.) 

To initialize a lattice to simulate such a wave function, one can 
proceed as if the wave functions possessed no particle exchange symmetry. 
That  is, the wave function is initialized according to one of  the N! terms in 
(32); the symmetrization will ultimately appear as a result of the way in 
which the count is taken. 

For  convenience, consider initializing a lattice according to the wave 
function 

~1 (Xl)~2(X2) ' ' "  ~bN (XN) (33) 

In doing so, each one-particle wave function is to be initialized indepen- 
dently; moreover, all the tokens used in initializing ~bj(xj) will have 
identical particle indices that are distinct from those used in initializing 
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some other state ~k(Xk). Therefore, presuming that the single-particle wave 
functions will in general overlap, each arc will be allowed to contain tokens 
with differing particle indices. Later, it will be shown that for fermion 
states, the number of distinct particle indices at any single arc can be 
reduced to one. For now, it will be assume~! that only oppositely phased 
tokens with the same particle index are allowed to annihilate. 

An 57-particle event (where 57 need not equal N) is then defined as the 
simultaneous arrival of 57 distinctly labeled tokens at the observation 
points x~, x2, �9 �9 �9 x~, along with the arrival of 57 ket tokens, subject to 
the restriction that the particle index of the ket token found at x; is the 
same as that of the bra token at xs where P is some (single) permuta- 
tion of the numbers 1 through N. Such an event will be denoted as 
e(xptl], xet2] ,- . . ,  xet~71), or e(P[1] . . . . .  P[57]) for short. The phase of the 
event is defined to be the product of all the ket tokens' phases times the 
complex conjugate of the product of the bra tokens' phases, times an 
additional factor of - 1  if P is an odd permutation. 

By arguments similar to those considered in one-particle systems, the 
expected 57-particle event counts are such that 

e(P[ 1] . . . . .  P[57]) 
N N 

- • "'" E Ck*l(X~)~i~(Xetll)"'q)*;(x~)cki;(xeE~l)a(P) [O~ik (34) 
i 1 = 1  i ~ = 1  

where it is assumed that the bilattice in question was initialized to statisti- 
cally simulate the N-particle wave function ~9(Xl, x2 . . . . .  xN), as expressed 
in (33), and where the summation is restricted to terms for which all the ij 
are distinct. This quantity is equal to the probability 

Prob(xl, x 2 . . . . .  x~7) (35) 

of finding 57 particles at the respective observation points times a factor of 
57!, this factor resulting from the fact that the present formalism yields only 
the sum of probabilities of the form (35) that are identical up to a 
permutation of its arguments. Alternatively, one could have chosen to 
distinguish each possible assignment of particle indices to the tokens during 
assignment. 

The validity of (34) is most easily proven by showing that events for 
which an identically tagged bra and ket particle are located at the respec- 
tive observation points x~ and xj have an expected value proportional to 
~v=  i~(x~)~b~(xs)" It may likewise be shown that the above result holds 
for arbitrary N and 57, provided that the summation is taken over all 
ordered selections (without repetition) of 57 elements from the set 
{1 . . . . .  N}; note that from the definition of multiparticle events, it follows 
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that the expected value of the event count is identically zero in the case 
where ~g > N. 

As an example, let the diagram 

G B R O 

511 X2 ~3 X4 

R* O* B* G* 

(36) 

stand for the four-particle event e(4312) in which ket tokens whose particle 
indices shall be labeled 'green' (G), 'blue' (B), 'red' (R) and 'orange' (O) 
arrive at the four observation points xl through x4 simultaneously with bra 
tokens labeled red, orange, blue, and green, respectively. The phase of this 
event is then the product of the ket phases times the complex conjugate of 
the bra phases, times another factor of - 1 ,  because ROBG is an odd 
permutation of the labels GBRO. Note that while the interchange of any 
two bra (or else ket) tokens negates the phase of an event, exchanging any 
two particle indices leaves the phase unaltered, since this is equivalent to an 
interchange of both bra and ket tokens. 

An N-particle event involving distinguishable particles, say particles of 
type A and B, will be considered valid if bra and ket tokens of type A 
constitute a valid N~-particle event and bra and ket tokens of type B 
constitute a valid N~-particle event, where N = N A + NB. The phase of the 
event is the product of the phases of the constituent events. Events 
involving bosons are treated in the same fashion, except that the phase of 
an event is obtained directly from the bra and ket tokens, without any 
extra factor of a(P). 

Note that it is possible to initialize distributions of N particles which 
give a predetermined N-particle event count while at the same time 
ensuring that all N-particle event counts for which ~ < N have an expected 
value of zero. For instance, in a two-particle event initialized with tokens 
having the particle indices red (R) and blue (B), respectively, consider the 
operation of multiplying all the R ket tokens by a phase of i r and all the 
B tokens by a phase of i b, where r and b are integers such that their sum 
is a multiple of 4. If r = 1, for example, this means transforming all the 
positive R tokens into posimaginary ones, all the posimaginary ones into 
negative ones, and so on. A similar transformation is applied to all the 
constituent bra tokens as well, with some other randomly chosen integers 
r and b (similarly subjected to the constraint that their sum is a multiple of 
4). In any ensemble of identically prepared two-particle systems, let this 
randomization be repeated throughout. 

Clearly, any two-particle event count is invariant under such an 
operation, since the phase of every two-particle event involves the product 
of the constituent R and B tokens, and this product remains unchanged for 
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both bra and ket tokens. However, because there is now an essentially 
random phase relationship between the R bra and the R ket tokens, etc., 
any one-particle event count will be zero. By modifying the definitions of r 
and b for either the bra or ket states, one can construct two-particle events 
whose expected values are negative. 

Such anomalous distributions of tokens and their generalizations are 
not simply a mathematical artifice; they are in fact necessary in order to 
initialize properly systems of particles with internal structure (spin, isospin, 
etc.). However, since measuring such properties involves subjecting the 
particle states to the corresponding mediating fields--and thereby elabo- 
rating the requisite interactions--the utilization of such distributions will 
be left as a future development. 

4.4.2. Coalescing Token Tags 

As mentioned previously, the Pauli exclusion principle allows for a 
considerable simplification of the token dynamics in the case of fermionic 
wave functions. 

Consider as an example a two-particle state, for which the particle 
indices will again be denoted as red (R) and blue (B). Because the wave 
function at any point corresponding to either of the single-particle states 
can be written as a sum over token paths, the product of the two wave 
functions at any two points may likewise be written as a sum over pairs of 
token paths. Consider all such pairs of paths for which two distinctly 
tagged ket tokens are at some time within the same arc. Thus, the R and 
B tokens may be said to travel into the same arc, where, upon exiting, the 
R token eventually gets to, say, the observation point x~ at the same instant 
as the B token gets to x2 (cf. Fig. 7). 

Note that because the two tokens were initially on the same arc, the 
probability of one of them subsequently arriving at a given point with some 
phase is the same for both tokens (up to a factor representing their phase 
differences at the time when they were both in the same arc). In other 
words, for any pair of paths in which the R token arrives at xl and the B 
token arrives at x2, there is another, equally probable pair of paths, call it 
the switched pair, for which the R token arrives at x2 while the B token 
arrives at xl, i.e., for which the tokens exchange their paths subsequent to 
entering the common arc. 

The first pair of paths appears in the path summation expression 
of ~b(x~)x(x2), while the switched path appears in the expression of 
z(x~)~(x2). 

Now any associated event for which the two ket paths have a path step 
in common is just as likely as an event for which the bra paths are 
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Fig. 7. Products of  hodotic wave functions can be related to a sum over pairs of  paths. Any 
pair of  paths which coincide at some arc can be matched with a pair whose steps subsequent 
to entering the arc are interchanged. The net contribution of such pairs is zero. 

identical, but for which the ket paths are the switched paths. But since a(P) 
differs for the two events, they will have opposite signs, so that the expected 
contributions of such events cancel. Therefore, in the context of this model, 
the effect of the Pauli exclusion principle is a cancellation of all events 
involving the simultaneous presence of distinctly indexed tokens at any arc. 

As a result, it is possible to simplify greatly the token dynamics. One 
cannot simply have such coincident ket tokens of opposite phase annihi- 
late; that would distort the event counts involving only events in which 
there is, say, only a single bra token with a particle index of R. A similar 
argument precludes the simple annihilation of ket tokens. 

Rather, it is the case that whenever two tokens of differing particle 
indices are found in the same arc, they may be replaced by two tokens 
whose particle indices are identical. That is, one can have either of the 
tokens take on the particle index of the other. If there are only two tokens 
present, then the surviving particle index has an equal probability of being 
either of the two initial values. In the above example, rather than having an 
R token and a B token exiting an arc with probability one, there can 
instead be two R tokens or else two B tokens, each with a probability of 
!/2. Therefore, the statistical weight attributable to each of the path steps 
in question remains unaltered. 

In order for this dynamical refinement to produce the proper sign, a 
token that assumes another token's particle index must also assume the 
phase of that other token. As an example, suppose a positive R token and 
a negative B token arrive at a given arc. In that case, the exiting tokens will 
both be positive, and have the particle index R, or else will both be negative, 
with a particle index of B; the probability of either outcome is 1/2. 
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This procedure may be generalized to any distribution of tokens. 
Suppose that j bra tokens of particle index R and phase ~bR, and k bra 
tokens of particle index B and phase ~b~ are found in a single arc. (It is 
assumed that all oppositely phased tokens with identical particle indices 
have already been annihilated.) Then with probability j / ( j  + k) all the 
tokens will be given the particle index R and the phase ~bR, or with 
probability k/ ( j  + k) they are all given the particle index B and the phase 
tkB. In the general multiparticle case, when tokens of more than two 
particle indices may be found in the same arc, it is easy to show that the 
tokens corresponding to any two particle indices may be coalesced into a 
single-particle index first, whereupon they may be coalesced with the tokens 
corresponding to some other particle index, and so on. The coalescing may 
even be extended to sets of identically indexed tokens located within an arc 
that are in two phases. For example, if there are j positive R tokens and k 
posimaginary R tokens, the tokens may be coalesced into being either 
entirely positive R or entirely posimaginary R tokens, with the probability 
of either outcome being respectively equal to j ( j  + k) or k/ ( j  + k). 

The ability to coalesce the identities of coincident tokens greatly 
simplifies the model. Instead of there being a large number of particle 
indices at each arc in the lattice, there will be only two (one for all the bra 
tokens and one for the ket tokens). Thus, at any arc of the bilattice, there 
needs to be a record only of the number of the bra tokens there, and if that 
number is nonzero, the phase and the particle index of all the tokens; the 
same holds for the ket tokens. Of course, information is lost by coalescing 
tags and phases, so that a larger ensemble of bilattices will be necessary to 
obtain a predetermined accuracy in any results. 

It is also possible, in the case of antisymmetrized wave functions, to 
perform multiparticle event counts without having to consider particle 
indices--in other words, in a formalism for which all tokens are truly 
indistinguishable, apart from their phases and classifications into bra and 
ket particles. In such a case, however, the event count necessarily involves 
keeping track of the tokens arriving at the observation points in a 
subensemble of bilattices, of order at least N. The proper particle exchange 
symmetry then comes about by having unwanted events cancel, on the 
average, due to the incoherence imposed on their phases. 

5. MACROSCOPIC SYSTEMS 

This section will discuss the features of the present formalism which 
are effectively unobservable in the macroscopic realm. Presuming one 
wishes to simulate some macroscopic system, and that the wave function of 
every participant particle of the system is prescribed, one initializes a 
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bilattice by placing bra and ket particles at a given arc--just as before--in 
accordance with the probability amplitude at any arc of the space in 
question. As previously mentioned, in systems containing more than one 
kind of particle, say electrons and quarks, there needs to be different types 
of bra and ket tokens for each of the different kinds of particles. 

Subsequent to the initialization, and presuming that the interactions 
among all the particles are properly approximated by the dynamics of the 
lattice tokens, the simulation proceeds by simply allowing the system to 
evolve for the desired length of time and then taking event counts in order 
to observe the resultant distribution of particles. For present purposes, it is 
assumed that event counts will be taken along a sequence of nearest-neigh- 
boring lattice points which converge, in the continuum limit, to a space- 
time path that may be traversed by a classical particle. 

Note also that it is adequate for the present purposes to consider only 
event counts of one type of particle, say the electrons, since in principle, 
one can infer the behavior of all the other particles from the changes they 
affect in the distributions of electrons, or some other preferred particle 
(Bell, 1991). Now in order to obtain from this formalism a model of 
macroscopic phenomena, one must mandate that all questions that can be 
asked of the system (that is, all the measurements made on the system) 
must be answered by way of event counts; such a restriction is fundamental 
to what follows. (In the case of multiparticle event counts, for which the N 
associated observation points trace N distinct space-time paths, it is as- 
sumed that every event count increment occurs at a single preferred point, 
at which information regarding the location of the event's participant bra 
and ket tokens has arrived. The multiparticle event count is then assumed 
to be incremented along a pathlike sequence of preferred points which also 
may be connected by a classical space-time path.) 

Moreover, any event count is assumed to be defined only to within an 
accuracy of _+ M, where M is some number large in comparison to unity. 
As discussed previously, the fluctuations of bra and ket occupation num- 
bers at any point about their expected values depend on the specific 
dynamics chosen for the tokens, as well as on the magnitude of the weight 
given to each bra and ket token. For small weights (and thereby small 
deviations), M may also be made smaller, and with such an understanding, 
its exact value may be left unspecified. 

The introduction of the parameter M is due to the fact that measure- 
ments in this formalism are understood to always be made by macroscopic, 
"classical" beings. Such beings are unable to observe microscopic phenom- 
ena directly, and must first make the microscopic states interact with larger 
ones, the latter having the property that a change in size of _+ M particles 
is imperceptible. Even so, it is still possible to speak of the outcome of 



774 Hrgov~i~ 

some single quantum event, provided that one is willing to consider 
simulating the larger, classical measuring device which allows that single 
quantum event to be perceived. This is, after all, what happens in the real 
world as well. For example, consider the case where one observes the track 
an electron leaves in a bubble chamber. What is ultimately observed in such 
a situation is not the single electron, but the distribution of matter in the 
macroscopic system that is the bubble chamber itself. In the present 
formalism, one can simulate the wave function of the single electron in 
question, but information regarding its evolution is then obtainable only by 
referencing (i.e., making measurements on) the macroscopic system that is 
the bubble chamber. 

(In fact, one ultimately has to consider that what is typically being 
measured in the above example is not the distributions of electrons in the 
cloud chamber, but rather the distributions of electrons affected by photons 
of light coming from the bubble chamber's surroundings and impinging on 
the observer's eyes; but in any case, quantum phenomena are perceivable 
only through their effects on macroscopic systems.) 

As another example, suppose that one wishes to simulate a pebble as 
a macroscopic collection of interacting electrons, neutrons, protons, etc. 
One could infer the position of this pebble by taking event counts in some 
localized region of space. Also, one could experimentally verify that the 
pebble is a localized distribution of matter by performing a two-particle 
event count at observation points whose separation is greater than the size 
of the pebble and noting that such event counts are consistently zero (plus 
or minus M). Other multiparticle event counts could be used to determine 
the moments of the mass distribution, and ultimately the shape of the 
pebble. Still other event counts could determine the velocity of the pebble 
relative to, say, some other distribution of matter being simulated, and so 
on. Therefore, the requirement that all information about a system must be 
obtained by way of macroscopic event counts is not an intractable one. 
Indeed, some procedure akin to the repeated and continual taking of event 
counts may well be the method by which human observers obtain informa- 
tion about their surroundings, even though such matters, for all their 
relevance (Jammer, 1974, pp. 481-482, 499-500; Wigner, 1967) lie well 
beyond the scope of this presentation. 

5.1. Incompatibility of Outcomes 

As previously discussed, the numbers obtained through any macro- 
scopic event count will be compatible with the expected numbers of 
particles predicted by quantum mechanics, and therefore, with the classical 
limit thereof. However, the outcome of an event count can vary widely 
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according to the choice of integration path, that is, the space-time path 
along which the event count is incremented. The implications of this path 
dependence ar~e especially relevant in the present formalism, where a 
nonlocalized distribution of tokens is associated with every particle's wave 
function. For example, in the above case of the bubble chamber~ an 
integration path taken in some space-time region A may correspond to an 
electron just having arrived at one region of the chamber; another integra- 
tion path in some distant region B of the chamber may be compatible with 
the electron having arrived there (and implicitly, not in region A). Such 
anomalies, affecting even event counts taken on "classical" systems, will be 
encountered whenever microscopic systems are amplified so as to influence 
macroscopic ones. And, as mentioned previously, such an amplification is 
precisely what is necessary in order for quantum mechanical phenomena to 
be observable in the macroscopic realm. 

It should be noted that all of the different physical outcomes obtained 
by considering several different space-time paths are equally valid, and the 
corresponding "many worlds" are all simulated at once (Everett, 1957). 
However, to each and every single observer there corresponds only a single 
integration path, and therefore only a single outcome. 

Also note that a two-particle event count, taken along pairs of points 
that are in regions A and B, respectively, would be insufficient in settling 
the discrepancy between the two single-particle counts in those regions, 
because it, too, would merely produce an event count that is compatible 
with quantum mechanics, and not necessarily with either of the single-par- 
ticle event counts it attempts to correlate. 

Moreover, any appeal to a memory device, be it a neuron or a lab 
notebook, will likewise be able to resolve the matter, since memory devices 
are--like all other physical systems--simply distributions of particles. One 
could compare the present state of a system with the memory devices used 
to store information about its past states, but doing so would involve 
making correlation experiments and multiparticle event counts with the 
particles comprising the devices. Again, the outcomes of these event counts 
would be numbers that are compatible with quantum mechanics and 
therefore its classical limit, but they would not necessarily be compatible 
with other event counts made on systems which the memory devices were 
intended to remember. 

As a result, the nonintuitive features of this formalism--nonpositive 
event count increments, multiplicity of tokens per particle state, etc.--are 
rendered operationally unobservable to any macroscopic observer whose 
sole source of information comes as a result of event counts. Moreover, the 
conceptual difficulty of becoming accustomed to such notions is compen- 
sated by the fact that the resultant model of quantum mechanics is truly 
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three-dimensional and local, and is far simpler overall than more mathe- 
matically sophisticated formalisms. 

6. DISCUSSION 

In conclusion, it is the case that a gaslike, three-dimensional distribu- 
tion of discrete lattice particles, governed by a local dynamics, is sufficient 
to simulate multiparticle quantum mechanics. The present approach ex- 
hibits features of several other formalisms designed to relate quantum 
mechanics to systems that are more classical, in the sense of being able to 
be modeled by local and three-dimensional dynamics (Jammer, 1974, pp. 
33-54; Jammer, 1966, p. 291). 

The motivation behind one such formalism is the similarity of the 
Schr6dinger equation to the diffusion equation (Nelson, 1966, 1985; 
Comisar, 1965), despite the consequent obstacle of making the resultant 
systems relativistically covariant. The present approach, in contrast, begins 
with systems of equations that are already relativistically covariant (in the 
continuum limit). This means, however, that the Schr6dinger equation is 
obtainable only as the low-velocity limit of the associated Dirac and 
Klein-Gordon equations. 

Other approaches which have the advantage of making the evolution 
of quantum mechanical systems formally equivalent to classical phase- 
space systems rely on the notion of generalized probabilities (Feynman, 
1991; Prugove6ki, 1986). Dirac was able to arrive at a phase-space formu- 
lation of quantum mechanics in which probability amplitudes (as opposed 
to simply their squares) are formally equivalent to probabilities, in the 
sense that small amplitudes are associated with events that occur only 
rarely (Dirac, 1945). A better known example of this approach is the 
Wigner function formalism, in all its manifestations and variations 
(Wigner, 1932; Moyal, 1949; Montroll, 1952; Balasz and Jennings, 1984; 
Hillery et al., 1984; Cohen, 1966; Margenau and Hill, 1961; Mehta, 1964), 
though it, too, cannot readily be extended to relativistic phenomena. Still 
other approaches involve the Euclideanization of time in computations 
involving propagators, a procedure not necessary in the present formalism. 

The interpretations formulated by Bohm (1952), Vigier (1979), and 
others (Nelson, 1966; Bell, 1964) and the hydrodynamic models of wave 
functions that preceded them are also models of quantum phenomena 
derivable in terms of the flow of conserved quantities. However, such 
formalisms are able to accommodate the seemingly noniocal phenomena 
associated with the EPR paradox (Bell, 1964; Aspect et al,, 1981; Clauser 
and Shimony, 1978) only by hypothesizing dynamical evolution taking 
place in a phase space of dimensionality proportional to the number of 
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particles in the system, whereas the present formalism can be cast in a 
three-dimensional configuration space. 

Some of the mathematical concepts underlying the approach taken 
here have also been studied before. In particular, its similarity to a related 
model introduced by Feynman has already been noted. Also, Gudder 
(1988a,b) has derived the constraints an abstract lattice system or graph 
must satisfy if it is to simulate quantum mechanics (and its associated wave 
equations). Still others have argued that lattices, discrete networks, and 
other continuum-violating paradigms have an importance beyond their 
utility as computational or analytical aids, given that classical notions of 
continuity are not expected to be valid at sufficiently microscopic scales 
(Jammer, 1954; Margenau, 1950; Finkelstein, 1974; Penrose, 1967, 1971; 
von Weiszticker, 1971; Regge, 1961; Wheeler, 1964; Landau, 1955; Rosen- 
feld, 1955; Klein, 1955). Finally, as noted previously, the discussion of the 
applicability of the formalism to the modeling of macroscopic system 
implements some of the notions found in Everett's (1957) relative state 
formulation of quantum mechanics, as well as von Neumann's and Wig- 
ner's theories of measurement (Jammer, 1974; Wigner, 1967). 

A P P E N D I X  

A.1. The Klein-Gordon Equation 

The previously obtained results for the wave equation can be extended 
to the computation of the Klein-Gordon equation. On an m-dimensional 
Euclidean space, the Klein-Gordon equation takes the form 

1 0 2 t/02 02 02 / 
c20tz~b=~-~X21+ff~X~+'''W~XZm/O +,20 (All  

where r/is a real parameter (and where partial derivatives have their usual 
continuum definitions). The Fourier frequencies of this equation obey a 
dispersion relation of the form 

~2/c2 = k~ + k~ + . . .  + kL + ~2 

A. I.I. Specification of Dimensions 

Recall the discussion of the wave equation of a toroidal space of n 
dimensions, all except m of which are "thin," i.e., are of length one. 
Suppose now that these thin dimensions were of length two instead of one. 
(If the length of all the dimensions were even, then it would again make 
sense to speak of even and odd sublattices.) The lattice would still be 
effectively m-dimensional, but there would also be extra degrees of freedom 
to consider. 
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First suppose that n - m = 1. A thin dimension of length two implies 
that one more set of spatial frequencies, ~x,, would be required to specify 
the system, corresponding to motions along the thin dimension. However, 
since the index x, only takes the values 0 or 1 (or by an appropriate change 
of variables +_ 1/2), it could be viewed as merely a specifier between two 
different "components" of the solutions. 

The dispersion relation of this system would then be of the form 

sin2~=llsin2SC~'~- . . .  s in2-~  �9 2/'_+~ 1 + + + i (A2) smIj) 
2 n 

(the last term of course being equal to one). For extremely small lattice 
spacings, this expression would become, in analogy with the discrete wave 
equation dispersion relation described above, 

o32/c 2 = k 2 + " "  + k ~  + (~/d) 2 (A3) 

where ~ is a constant on the order of one and d is the length of the.lattice 
spacing. This is precisely of the form of the Klein-Gordon dispersion 
relation, with d/~ acting as the Compton wavelength of the associated 
particle. 

This approach therefore is loosely reminiscent of Kaluza-Klein mod- 
els, insofar that mass is the manifestation of the topology of the space 
corresponding to motion along a "matter" dimension. Of course, this 
system is only useful for situations involving spatial frequencies, i.e., 
momenta, much smaller than d -l ,  so that only nonrelativistic phenomena 
can be accurately simulated. 

Suppose, however, that m is the typical 2 or 3, corresponding to two- 
and three-dimensional cases, and that n is large, even astronomically so. 
Such a system has an evolution that is correspondingly harder to compute 
(because the speed of light is then very "slow," i.e., a relatively large 
amount of computation is necessary to execute a given time interval of the 
simulation). Even so, the above considerations for the case n = m + 1 still 
hold, except that the mass term in the dispersion relation, ~, would be 
multiplied by a factor of n, thereby increasing the spectral range in which 
the approximation to the continuous case is good. Also, the approximately 
n momenta corresponding to motion along the thin dimensions can like- 
wise be further manipulated, depending on the internal substructures and 
symmetries of the particles one wishes to simulate. 

Such a model is also reminiscent to the one-dimensional Klein- 
Gordon equation considered by Feynman (1968; Feynman and Hibbs, 1965; 
Schweber, 1986) (which he refers to as a Dirac equation). Although the 
model described here has the advantage of being applicable to systems in any 
dimension, as opposed to simply the one-dimensional case (Schweber, 
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1986; Feynmann, 1968), both versions are limited by the fact that the 
lattice spacing may no longer be taken to zero, but has a fixed length 
proportional to the Compton wavelength of the particle under consider- 
ation. Even if one could disregard the problems of accommodating such a 
model with the continuity of space that has been observed at all experimen- 
tally accessible spatial scales, it would still be more desirable to a priori 
require the model to accommodate an arbitrarily small lattice spacing, so 
that in principle, the continuum could then be replicated to. arbitrary 
precision. The remainder of this section describes such a model. However, 
it should be noted that despite its problems, the previous approach is useful 
in that it demonstrates how the topology of the lattice is itself a set of 
parameters that can be used to alter the dynamics in accordance with the 
desired equations of motion. 

A. 1.2. The Modulation Method 

Another way of changing the wave equation into the Kle in-Gordon 
equation is to introduce mass parameters in such a way so as to make any 
resultant linear perturbations in the associated dispersion relation vanish. 
With this in mind, let the number of neighboring arcs be doubled. For 
example, in two dimensions, let it now be the case that there are two arcs 
connecting a point to any of its nearest neighbors: two arcs in the x+ 
direction, two in the y+ direction, and so on. Alternatively, one may 
suppose that the associated tokens have yet another degree of freedom, and 
can be in either, say, a 'top' or 'bottom' state. Each one of the doubled 
number of arcs will--just as before--lead to separate flows, which will be 
respectively denoted by fx + and fx+, etc. The equation of motion for the 
traveling waves then takes the form 

oo' 1 - 3  l l 1 1 1 1 yx+ i. 

! L _  I --3 1 1 l 1 1 1 1 fx_ I 

L + l  1 1 1 - 3  1 1 1 1 L + l  
f y _ [  1 1 1 - 3  1 1 1 1 1 L -  I 

fx+ ] =4 1 1 1 1 1 - 3  1 1 fx+ 

+ 1 1 1 1 1 1 1 - 3  

f _ ]  1 1 1 1 1 1 - 3  1 .ix ] 

(A4) 

The system is still, in effect, two-dimensional. Indeed, one sees that by 
adding the respective 'top' and 'bottom' coefficients of the matrix as one 
flow (e.g., f ' ,+ =-f,:+ +fx+, and so on), the original two-dimensional 
system of equations (16) is recovered. 
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Next, divide the above matrix into quadrants and multiply the co- 
efficient in the two off-diagonal quadrants by e-~~ and every coefficient in 
the diagonal quadrants by e i~. How this modulation can be implemented by 
way of a discrete particlelike process is discussed below. 

By a simple calculation, one can verify that the system satisfies the 
relation 

where the partial derivatives are as defined in (1) so that they are as yet 
dimensionless; as before, the terms in the above equation containing factors 
of ~O(x, y, t) not displaced by one unit of space or time all cancel. If one 
computes the resultant dispersion relation for this system, one obtains 

COS 
cos co = - ~  (cos x x + cos ~y) (A6) 

Note again that as in the case of the wave equations, the frequencies are 
always real. Expanding the above equations in a power series shows that 
for a small lattice spacing and sufficiently small ~, this system satisfies a 
dispersion relation of the form 

l 2 o3 2 = ~ [k2x + ky + (~,)2] (A7) 

where the k x and Icy have their continuum definitions, and where ~' is 
divided by the lattice spacing so as to have dimensions of inverse length. 
This again is precisely the form of the dispersion relation of the Klein- 
Gordon equation. Note that by negating ~ in the above matrix obtained 
from (A4), another system satisfying the same dispersion relation is ob- 
tained. This approach can immediately be extended to any number of 
dimensions and has an additional advantage over the previous one in that 
the extra components that have been introduced do not change (up to first 
order) the value of the speed of light from (l/n) 1/2. 

For future reference, it will be helpful to introduce some notation. Let 
T[m] stand for the 2m x 2m matrix, the j th  column of which has the 
property that all its coeff• are 1/m except for the single coefficicnt 
T[m]jk, which is equal to - ( m -  1)/m, where 

k = ~ J  +1 if j i s o d d  

U - 1  if j i s even  

Thus the matrices in (16), (18), and (A4) are equal to T[2], T[3], and T[4], 
respectively. A matrix T[m] whose coefficients in its off-diagonal quadrants 
are multiplied by e -~ while those in its diagonal quadrants are multiplied 
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by e i~ will be denoted as iP[m, e], so that iP[m, 0] = ~[m]. Thus, 

I e+ia _e+ia e-lOt e-i~ 
l --e +i~ 8 +ia e -ia e-iCt 

T[2, a] = ~ e_i~ e_i~ e+,~ _e+ ,"  

e i= e-i~ _e+i~ e+iCt 

Note that the T[m, c~] are also unitary. 

(A8) 

Statistical Modulation 

The lattice interaction whereby an incoming flow is modulated by a 
factor of e i~ from what it would have been in the case of the wave equation 
may be implemented via a particle approach, just as, previously, the flows 
associated with the wave equation were interpreted in terms of the statisti- 
cal motions of discrete particles. It will next be shown that a gaslike 
population of Poissonly distributed background particles can be used to 
effect (statistically) the desired modulation. 

Consider again the lattice in which the Kle in-Gordon equation is to 
be implemented. Aside from the tokens executing wavelike motion, let 
there also be a number of particles comprising what will be called the 
moderator gas. The dynamics of these particles as they move from point to 
point along the arcs is arbitrary, except that it is assumed that they have at 
all times a Poisson distribution. That is, at each arc, there is a probability 

~k 

P(cr k) = k.V e -~ (A9) 

of finding exactly k particles. Therefore, if the number of points in the 
lattices is N", the expected number of moderator tokens, assuming 2n arcs 
per point, is 2naN n. 

Suppose next that the presence of one moderator token in an incoming 
arc multiplies the outgoing distribution by (1 + ic), where c is a positive 
number which shall be assumed to be less than or equal to one. That is, 
whereas in the absence of any moderator tokens, the presence of a wave 
token of phase q5 produces outgoing wave tokens of the same phase with a 
probability of 1/4, now there will also be produced, with a probability of 
E/4, a wave token of phase i4~. For the reverse arc, where the probability 
associated with the outgoing tokens is 3/4 and the phase of the outgoing 
tokens is -qS, the tokens induced by the moderator particles are likewise 
produced with a probability of 3E/4 and a phase of -q~. (As always, any 
resultant tokens of opposite phases annihilate each other.) In the absence 
of any moderator tokens, there is no extra E interaction. 
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Thus the moderator tokens act to multiply the number of wave tokens. 
In a given arc, in the presence of one moderator token, the input of one wave 
token leads to an expected number of (1 + iE) tokens. An additional 
moderator token will act on the output tokens of the first one in the same 
way, resulting in an expected number of (1 + iE)2 tokens. 

Therefore, the net expected number of output tokens is 
(~ ~2 

e -~ + (1 + ic) ~ e  -~ + (1 + iE) 2 ~.ve . . . . . .  e ì ~' 

Thus, a discrete process is sufficient to modulate the statistical flows of 
tokens by an arbitrary real parameter. The moderator distribution thus 
serves here a function similar to that of the Higgs fields of quantum field 
theories, insofar as it induces a mass. Note that if the extra token which the 
moderators produced are of a phase - i times the phase of the initial token, 
making e, in effect, a negative number, then the corresponding modulation 
factor likewise has a negative phase. The remainder of this section shows 
that moderator particles that are themselves multiply phased can also be 
used to induce a modulation factor. 

Suppose next that there are two types of moderator tokens, each with 
a Poisson distribution parameterized by ~ and ~', respectively, and both of 
which operate on the wave tokens of phase q~ to produce an additional token 
of phase iq~, with the probabilities E and E'. The modulation is then 

Next consider a situation in which the two types of moderator tokens, 
each initially with a Poisson distribution parameterized by ~§ and ~_, at 
each arc of the lattice, are given the respective opposite phases of + 1 and 
- 1. That is, the moderator tokens are themselves given phases, with all the 
~+ tokens having a positive phase and all the ct_ tokens having a negative 
one. (Note that imaginary phases are not included.) Each positive and 
negative token multiplies the outgoing distribution of wave function tokens 
by a factor of (1 + iE) and (1 - iE), respectively. Where moderator tokens of 
both types are found in any arc of the lattice, they again will be made to 
annihilate, so that only one type of token remains. 

Thus, in considering both types of tokens at once, one can say that at 
any arc of the lattice, there is a certain probability of finding any number 
k of tokens, where k may be negative as well as positive. Finding a negative 
number of tokens simply means finding a positive number of tokens of the 
second type. 

The probability of finding any number is then given by 

p(~t+,ct ;k)= ~=oP(~t+;k  +m)P(ct_;m), k ~O (AI0) 
~.~=oP(~+;m)P(ot_;m - k ) ,  k < 0  
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Writing out the individual Poisson distributions, one obtains 

5_t_lk[ + m ~_ ~ _  m 

P(5+ , 5_ ; k) = e-~+ -~ -  
m = 0  ([kl + m)!m! 

: e  -~+ - ,  (~+~k/2/Ik1((45+~-)1/2) 

k . . . . .  - 1, 0, I, 2 . . . .  (A11) 

where Ik(X) is the modified Bessel function of the first kind, of order k, 
which satisfies the differential equation 

x2I ' (x)  + xI ' (x)  = (x 2 + ka)I(x) 

The modulation factor arising from such a distribution of tokens is 
proportional to ( 5 + -  5_). 

In the limit of infinitely long times, the same kind of modulation can 
be produced by a moderator with a binomial instead of a Poisson distribu- 
tion, because of the similarity of the two when the appropriate limits are 
taken. (By a binomial distribution, what is meant is that there is a 
probability p of finding one moderator token at any arc, and a probability 
1 - p  of finding none.) The ability to statistically modulate quantities by an 
arbitrary phase shift is useful not only for the simulation of the Klein-  
Gordon equation, but for the analogous equation for particles subject to 
electromagnetic or other potentials that themselves satisfy wave equations. 
The potential amplitude can, just as the quantum wave functions and the 
moderator, be given statistically with discrete tokens, which will operate on 
the quantum wave functions just as the moderator tokens do. 

A.2. Maxweli's Equations 

The scalar wave equation considered above can readily be extended 
into a system for simulating electromagnetic potentials. Initially, it will be 
assumed that the potentials are generated by classical point charges whose 
positions at two successive time steps are always on nearest-neighboring 
lattice poin ts - -and thus may be viewed as traveling along the arcs of the 
lattice. These charges will emit tokens in such a way as to yield (on the 
average) an electromagnetic field obeying the Lorentz gauge, this being the 
most convenient choice. Moreover, it will be assumed that the charges in 
question are not themselves affected by the fields they generate--i.e., the 
tokens they emit. 

It is assumed that in addition to being distinguished according to 
phase, the token may be in one of four states, labeled the A x, Ay, Az and 
V states--with the distinction depending on the motion of the charges (i.e., 
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the succession of nearest-neighboring points on which the charges are 
located) at the time the tokens were emitted. 

The Lorentz gauge condition 

l a  
- - -  V = - V "  A (A12) 
c at  

will be assumed to be valid at any two time steps, on the average. (This is 
trivially true in the case when currents and fields are initially zero and 
result from, say, positive-negative charge separation.) Moreover, the con- 
servation of charge will be assumed to hold absolutely, even though 
situations in which the charges are conserved only on the average are also 
within the scope of the formalism. The charges shall be assumed to be 
real-valued, with fixed values of 1 or - 1 .  

Note that (A12) can be used as the defining relation for the scalar 
fields (i.e., the V tokens) in terms of the remaining vector field tokens. The 
emission rules for the vector field tokens can then be made to correspond 
in the macroscopic limit to the equations 

1 a 2 J 
V2A - c-- 5 ~t---- 5 A = c (A13) 

where the dependence on time and space customarily is suppressed. Note 
that the above three equations are defined on Euclidean space. 

It remains to specify the charge and current densities. The value of the 
charge density at any lattice point will naturally be specified as the net 
number of charges at the point divided by the appropriate power of the 
lattice spacing. The current density J~n(x) is defined in terms of the charges 
on the arcs leading into the point x. A positive charge located at x which 
was located at x - ei at the previous time step and which in the subsequent 
time step will travel to x + e,.. will contribute an amount of �89 + Jr )  to the 
current density. Likewise, negating either ei or er (or the charge of the 
particle in question) will negate the corresponding contribution to the 
current. With such a definition, equation (A13) will be time-reversal 
invariant. 

Every lattice point containing charges shall emit field tokens. There are 
in fact several ways of specifying the emission probabilities so that (A13) is 
satisfied; for present purposes, it suffices to assume that the presence at x 
of any positive charge which in the previous time step moves along the 
positive j th  axis will generate positive tokens in the two arcs along the axis 
in question (in the same way as an incoming token would), with a 
probability of t//2, where r/is a positive number less than or equal to unity. 
Reversing the charge reverses the phase of the emitted tokens, as does 
reversing the orientation of the incoming charge. Tokens will also be 
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emitted corresponding to the step which the tokens will make in the 
subsequent time step, according to the same conventions. Thus, assuming 
that a positive charge at x traveled along the positive x axis in the previous 
time step and will travel along the negative y axis in the subsequent time 
step, positively phased tokens will be emitted in each of the arcs along the 
x axis and negatively phased tokens will be emitted in the arcs along the y 
axis, with the probability of an emitted particle being found in either step 
being (independently) equal to r//2. Such an emission probability assures 
that (A13) is satisfied. 

Let 

~xjf(x ,  t) = f ( x  + ej, t) - f ( x  - ej, t) (A14) 

where the kth component of ej is 6jk, and let the time derivative be similarly 
defined. For the above emission rules, it may be shown by direct computa- 
tion that the Lorentz gauge condition (A12) will be satisfied if the scalar 
tokens emitted in the negative direction along any axis (i.e., the x, y, or z 
direction) are weighted by an extra factor of - 1. Thus, whenever a charge 
emits, say, a positive A~ token along the positive and negative x axis, it will 
also emit a positive V token along the positive x axis and a negative V 
token along the negative x axis. 

Given that (A12) is assumed to be true at two successive time steps, it 
can then easily be shown that the relation 

1 ~2 
W V - c- 5 O t-- i V = p-p-c (A15) 

is satisfied at all times. Moreover, it may be shown that the relations (A12) 
and (A13) are preserved through time, by taking the discrete time deriva- 
tive of both sides of the equations. 

A.3. The Dirac Equation 

Solutions to the Dirac equation may also be simulated by the present 
formalism. Recall that the massless Dirac equation (i.e., the Weyl equa- 
tion) may be written as 

i i: 1;[o  /jI l c~t p ' d  Z 

where ~0 and X are both two-component spinors (whose dependence on 
space-time has been suppressed), the j th component of p is i ~/dxj, where 
the partial derivative is as defined in (AI4), and the components of the 
vector d are the respective Pauli spin matrices. 
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It is desirable to retain as much of the formalism of hodotic solutions 
as possible. The form of the 'transition' matrix in (A16) suggests the ansatz 
that in the case of the Dirac equation, the coefficients transforming the 
input flows into the output flows should be equal to their scalar-wave 
versions times an additional generalized phase factor. Recall that in the 
case of scalar wave equations, the token phase factors formed a cyclic 
group of four elements. In the case of Dirac equations, a token will be 
allowed to have an extra twofold degree of freedom, whereby it may be 
said to be in either a "spin-up" or "spin-down" state, with the two being 
distinguished by the usual spinor representation. Also, there will be an 
additional twofold degree of freedom whereby a token may be in either a 
"~b" or a "Z" state. The overall generalized phase will then be a Kronecker 
product of these three factors, which shall be referred to as the scalar, spin, 
and antipodal phases, respectively. 

Note also that because of the way in which the discrete analog of 
partial derivatives are defined in (A14) and the off-diagonal form of the 
right-hand side of (A16), the upper two components of the equation are 
dependent only on the lower two, and vice versa. A simple change of 
variables at either the even or odd time steps then allows (A16) to be 
brought into block-diagonal form, as could have been shown by more 
standard methods. Therefore, one may in fact decrease the number of 
components in the system of equations by half (though in the present 
formalism the number of components will again be doubled when mass is 
incorporated). 

The form of the resultant Weyl equation--particularly terms of the 
form p" 6- -a lso  suggest that the discrete dynamics of the tokens should be 
modified as follows: let a token that takes a step along the positive 
(negative) xj axis be multiplied by a positive (negative) factor of trj. Again, 
the reference to a token taking a step is made by identifying the input and 
output particles at any lattice point, even though there may be several of 
the latter for every one of the former. 

As an example, a spin-down token with a positive phase, denoted by 
the spinor (0), which takes a step along the positive y axis will in the 
subsequent time step have the form O'y(0)  = -i(01) state (where 
try = [o o"]). That is, it will subsequently be a spin-up token having a 
phase of - i .  As before, tokens having the same spin and antipodal phases, 
but opposite scalar phases, will be assumed to annihilate. 

It can then be shown by a trivial computation that the above system 
does indeed satisfy the Weyl equation, where the discrete analogs of the 
first-order partial derivatives are defined as before, and where the speed of 
light is now l/n instead of (1/n)~/2. This latter change--which comes about 
because the (discrete) second-order partial derivatives now involve terms 
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displaced by two units of space-time instead of just one--ensures that the 
frequencies will contain no imaginary component, as before, so that the 
solutions remain bounded. The introduction of a mass term, transforming 
the Weyl equation into the Dirac equation, is achieved in much the same 
way as in the case of the Klein-Gordon equation, i.e., through doubling 
the number of arcs connecting nearest-neighboring points and modulating 
the corresponding T[m] matrix into ~P[2m, ~]. 

Explicitly, the equations of motion for the ~b spinors are of the form 

o u t  
x +  

( ~ y  + 

~by_ 

~b~_ [ = Diag(  
~bx+ 

~br_ 

where the q~x § and q~x§ 

('5 X 

D O- x 

O 'y  

- -  O 'y  

0" z 

- -  O- z 

O'x  

- -  0" a 

% 
- -  O 'y  

O" z 

- -  O" z 

~ x  + i n  

Z x _  

Zy + 
Xy_ 

) (T[6,  a ] |  ~ ] ) Z ~ _  [ (A17) 
Zx+ [ 

XY_ 

Z z _  J 

refer to the two (spinor) flows of the ~ variable 
exiting the point in question along the positive x axis, and so on. More- 
over, the Kronecker product operation implies that each coefficient in 
7[6, ~] multiplies a 2 x 2 identity matrix that acts on spinors, and the first 
entry on the right-hand side stands for the block-diagonal matrix (with 
blocks having a dimensionality of 2 x 2) whose nonzero coefficients are 
Pauli matrices, as indicated. As in the case of the Klein-Gordon equations, 
the modulation imposed by the exponential factors may be implemented 
statistically, by way of a background lattice gas of Poissonly distributed 
moderator tokens. 

Let a similar set of equations apply to the Z spinors, except that the 
variable ~ is everywhere negated (in keeping with the usual interpretation 
that the ~b and ~ spinors represent the positive- and negative-mass states). 
It may then be verified by simple algebra that the equations of motion satisfy 

~3t 2 
3t--- 7 ff = c 2 cos~(~) V2~ - 4 sin2(~)r (A18) 

where ~b stands for the four-component spinor whose top and bottom 
components are the q~ and X spinors, respectively. In keeping with the 
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above definition for partial derivatives (A14), the components of the 
Laplacian here satisfy the relation 

02 
O x ~ f ( x ,  t) = f ( . . . ,  X i "~ 2 . . . .  ) -- 2f( . . . .  xi  . . . .  ) + f (  . . . .  x t  --  2 . . . .  ) 

(AI9) 

and likewise for the derivative involving time. By expanding the trigono- 
metric terms depending on e in a power series about zero, it may be shown 
that for sufficiently small values of e, the dispersion equation of this system 
takes on its desired Klein-Gordon form, with e again serving as the mass 
(up to a factor involving the lattice spacing). Had the 7~[6, ~] matrix in 
(A17) and its analog for Z been identical (as opposed to complex conju- 
gates), then the resultant second-order equations would have been equiva- 
lent to the wave equation, except that the speed of light would have in 
effect been multiplied by a factor of cos ct. By properly generalizing the aj 
matrices, one may correspondingly apply the present formalism to any 
number of dimensions. In each case, the coefficients of the associated 
transition matrices are multiplied by elements of a group corresponding to 
the internal structure of the particles in question. Parameters such as mass, 
which have the effect of modulating the flow of tokens by some complex 
phase factor, are manifested as the perturbations induced by a Poissonly 
distributed field of tokens. Other fundamental equations of particle physics 
can likewise be simulated by similar means. 

The equations given here involving the point solutions have the 
property that they are correct regardless of whether the solutions at a point 
are defined to be sums of incoming flows or outgoing flows. If, say, only 
the sum of outgoing flows is to be used, then there will exist several other 
transition matrices that yield (A18), which are nontrivial modifications of 
the ones given here. Note again that while the number of components 
appears to have been doubled, the antipodal phase can be removed by a 
simple change of variables. Moreover, as before, the hodotic solutions for 
this system may be shown to be (over)complete, by constructing Green's 
functions expressed in terms of interlocking hodotic solutions. 

In the case where ct = 0, the present formalism can of course be used 
to simulate the scalar wave equation, and by extension the Maxwell 
equations considered previously. However, the speed of light in such a case 
will be equal to 1/n instead of (1 In)  t/2. 

To incorporate potentials into this formalism, corresponding to those 
of a classical background field, consider modulating every wave function 
token entering a point x by an amount exp[iAi"(x)/2], where 

A i n ( x )  = v i n ( x )  - -  A i n ( x )  �9 u in (A20) 



QM on a Space-Time Lattice 789 

where u is a unit vector pointed along the arc on which the token in 
question is traveling; the superscripts refer to the fact that all the variables 
have values dependent on the incoming field tokens. If  A~ is 
analogously defined in terms of the tokens exiting the point x, and the 
exiting wave function tokens are further modulated by a factor of 
exp[iA~ the system may be shown to converge to the Dirac equa- 
tion interacting with a classical field. Alternate treatments in which the 
incorporation of the potentials is carried out only in terms of incoming or 
exiting tokens can also be considered, at the cost of forsaking time-reversal 
symmetry (or the expected values of the amplitudes). A self-consistent 
system of charged particles and fields in which the only fields present are 
those the (quantum mechanical) particles themselves emit may be imple- 
mented by expressing the currents in terms of the bra and ket occupation 
numbers ~(x, t)~(x, t). 

A.4. Hodot ic  Solutions 

In reference to the first (i.e., scalar) wave equations considered here, 
some unusual properties of its associated hodotic solutions are easily 
established by resorting to summations over paths. As before, let ~x f (X,  t) 
be the sum over all space of some funct ionf(x ,  t) at some instant of time. 
That is, it is a sum over the point values of a given solution. 

It is easy to show from the equations of motion that the hodotic 
solutions have the property that ~x  h~(x, t) is equal to one for all time, 
where, as before, 

~ ~(x~ § , x ~ _ ,  x2§ . . . . .  xo_~ 

What is much more remarkable is that on any n-dimensional torus whose 
lengths along any of the coordinate axes are the same, the quantity 
~x  hi(x ,  t) is also equal to one for all time. That is, without regard to the 
traveling wave arc solutions, the integral of the square of the point solution 
is conserved. (This property does not hold, in general, for an arbitrary sum 
of the hodotic solutions.) The proof of this conservation is somewhat 
tedious, but it will be outlined briefly, using the two-dimensional case as in 
an example. 

As noted above, hx+ (x, y, T) may be written as a sum over all walks 
of length T that start the origin, go immediately afterward to the point 
(1, 0), then on to (x, y). By the same argument, h~+(x, y, T) may also be 
written as a sum of terms, each .of which now represents a pair of such 
paths. Explicitly, 

h~§ ~ (1/2)2r(--1)R(tx+)+R(z~+) (A21) 
zx +,z.~ + 
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where I'x+ is an indexing of paths identical to Ix +, and the rest of the 
notation is again the same as for (27) and (28). 

Let h~+(x,y, T) represent the contribution to hx+(x,y, T) of paths 
whose Tth (i.e., whose final) step is along the x+ direction, so that 

Then, 

h" T) (A22) hx+(X,y,T)=~ ~+(x,y, 

~ ( h ~ + ) 2 = ~ ( h ~ + ) 2 + ~  ~ h~+h~'+ (A23) 

where the functional dependence on x, y, and T has been suppressed. Now 
the first (double) sum on the right is equal to one. This is because it 
represents the discrete integral of the sum of the squares of the traveling 
wave components for this solution of the wave equation. This quantity, due 
to the unitarity of the transition matrix, is always conserved (and therefore 
equal to its initial value of one). Therefore, it remains only to show that the 
second sum on the right vanishes. 

First suppose that the two-dimensional torus under consideration is of 
infinite length along either axis. Unlike the first sum on the right-hand side, 
the second contains no terms representing pairs of walks that are identical. 
This is because if the two paths corresponding to such a term were 
identical, they would obviously have their Tth step along the same direc- 
tion and therefore would belong in the first sum. It is easy to see 
graphically that any such pair of nonidentical paths may be related in a 
one-to-one way to another pair of paths (belonging to the same summa- 
tion) whose cumulative number of reversals differs by one (Fig. 8). Since 

~176 
! 

! ! 

(a) 

'" t 

i ' 
. . . .  7 ! : ! L.--.J 
I ' 

Co) 
Fig. 8. Two paths (a) that are identical except for their final m steps, where m # 0, but arrive 
at the same place at t = T, may by a symmetry operation be related to another pair of  paths 
(b) such that the total number of  path reversals in the latter pair differs by one, so that the 
net contribution of  these two pairs is zero. 
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the value of the contribution of any pair of paths depends only on the 
number of reversals they contain, the contributions to the summation from 
these two sets of paths therefore cancel one another (Fig. 8). [In fact, one 
can extend this argument to show that (A23) would be unchanged if the 
right-hand side summands were multiplied by ~l,r.] 

The same result can be obtained without resorting to graphical meth- 
ods by representing each path as a string of T choices from the set of 
possible directions, and then showing that the contributions from certain 
classes of strings cancel. 

To extend these results to a torus, it is also necessary to consider terms 
in the sum representing wrapping pairs, i.e., pairs of paths that when 
connected end to end describe a loop that is not homotopic to a point, but 
instead wraps around the torus along some direction. (The reference to 
homotopy is, of course, made with regard to the continuous paths that can 
be obtained from the discrete ones by imbedding the lattice in a Euclidean 
space, and by likewise transforming any step between two lattice points 
into a continuous path along the straight line segment joining those points.) 

If the two axes of the torus are of equal length, then the contributions 
from the pairs of paths that wrap around the torus along one direction may 
be seen to cancel the contributions of those that wrap in the perpendicular 
direction. However, suppose the lengths of the lattice along the two axes 
are unequal. Then for sufficiently large T, there will be a pair of paths 
wrapping around the shorter length of the torus whose contribution to 
the integral will not be canceled by a pair of paths wrapping along the 
other axis, because the latter axis is too long to traverse in T time steps 
(Fig. 9). 

In n > 2 dimensions, the proof is more tedious, because the coefficients 
in the transition matrix no longer have the same modulus. Let a pair of 
nonidentical paths be called reversal-diverging or transversal-diverging, 
respectively, according to whether or not the two paths diverge by having 
one of the paths execute a reverse step (Fig. 10). (Remember, all of the 
paths under consideration already have an identical first step.) The contri- 
bution of a pair of reversal-diverging paths must then be added to the 
contributions of (n - 1) pairs of transversal-diverging paths in order to 
obtain a cancellation. In extending the proof to an n-dimensional torus, 
one will similarly have to take special notice of the wrapping pairs, which 
again may be classed according to whether they are reversal-diverging or 
transversal-diverging. The contribution from such a pair of reversal-diverg- 
ing paths will cancel out the contributions from (n - 1) pairs of transversal- 
diverging paths, but again, only if the axes of the torus are of equal length. 

We turn next to another curious property of the hodotic solutions, 
which becomes useful in decomposing solutions of  the wave equation into 
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Fig. 9. If the two axes of the torus are of unequal length, say, Ly > L x, then at t = 
L~/2 + 1 = T, a pair of paths forming a loop along the x axis will not be canceled by a 
corresponding loop along the y direction, since the loops could only be made of paths of 
length greater than T. 

. q . . . . . . .  

o o  i m g l l t  

I 

I 

Fig. 10. The pair of paths on the left diverges with one path making a reversal; it is said to 
be reversal-diverging. The pair on the right diverges with neither of the paths making a 
reversal; it is said to be transversal-diverging. The solid line indicates the portions of the two 
paths that are identical. 

c o m p o n e n t s  o t h e r  t h a n  t he  2n t r a v e l i n g  w a v e s  d i s c u s s e d  a b o v e .  Le t  p r o m o -  

t ion  o f  a n  m - d i m e n s i o n a l  s o l u t i o n  o f  (2)  to  a n  n - d i m e n s i o n a l  space ,  w i t h  

n > m,  d e n o t e  t he  f o l l o w i n g  p r o c e d u r e :  

Take the (m-dimensional) hodotic solution at any two successive time values 
and imbed it in a space of dimension n. That is, use the solution as the boundary 
conditions on a hyperplane of dimension m in an n-dimensional space, with the 
solution being zero everywhere outside the hyperplane. Afterward, iterate 
according to (2) [the speed of light becoming (1/n)1/2]. 
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The hodotic solutions have the interesting property that they may be 
iterated an arbitrary number  of  times, promoted to a higher dimension, 
iterated again for some other arbitrary number of  times, promoted to a still 
higher-dimensional space, and so on, all the while producing a solution 
whose discrete integrals over the corresponding space of  the point solution, 
as well as its square, are constant. The proof  is similar to the one outlined 
previously; classes of  pairs of  nonidentical paths can again be shown to 
cancel, although for the purposes of  the proof, the number  of  classes to 
which a pair of  paths may belong varies according to the time at which the 
two members of  the pair diverged (more precisely, according to whether 
they diverged before or after the given imbedding in the higher-dimensional 
space). Note that in general this result does not hold for a torus. 

Finally, note that the n-dimensional hodotic solutions are simply the 
promotions of  one-dimensional hodotic solutions to the appropriate higher 
dimension. 
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